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Abstract 

Recent advances in laser scanning techniques have allowed for a wide variety of applications and therefore 

the adaption of laser scanners (LS), both airborne laser scanners (ALS) and terrestrial laser scanners (TLS), 

is increasing in many science disciplines. Soil erosion is not an exception, where advances in soil erosion 

detection and measurement techniques are a crucial step in the reduction of errors and uncertainties in soil 

erosion models. In this paper, topographic datasets captured by different laser scanning devices were tested 

in order to quantify the soil erosion by water using different software-types. An experimental protocol based 

on iterative processes of data capturing and processing on field plots are the essential points of the 

methodology. In the selected experimental site, five plots were defined and scanned before and after 

removing manually some soil volume, as would occur during any soil erosion process. Later on, the eroded 

materials were weighted at the laboratory and their volume calculated considering their bulk density. The 

scanned dataset (i.e. point cloud) was also adjusted and calibrated at the maximum possible resolution in 

relation to the device capacity (i.e. accuracy and spot size divergence). Subsequently, soil erosion in each 

plot was calculated with the available software-types and both laser-calculated and manual-weighted results 

were compared from each scan using different software-types. Results revealed that soil erosion measured 

with laser scanning techniques is good when adequate calibration at adequate spatial resolution is performed. 

Moreover, the combination of hardware and software has led to a variety of results which highlight the 

importance of the algorithm used by each software-type. Furthermore, soil erosion measured with TLS  vary 

considerably in relation to the software used, and thus the values reported without  indication to the software 

might be doubtful and should be used with caution in hydrological modelling. 
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Introduction 
In general, and in order to quantify soil erosion by water in the field, different methods are often used, e.g. 

profile-meter, erosion pins, runoff-erosion plots, etc., according to the dominant hydrological processes 

and/or their spatial distribution. Methods based on sediment quantification collected by automatic samplers 

coupled to gauging stations have severe inconveniences when hyper-concentrated flows clog the gauging 

devices and sensors like those in badlands (Solé-Benet et al., 2003). Whereas classic methods based on 

microtopographic variations (erosion pins, profile-meters) are precise at local scale, the extrapolation of their 

results to large scales (i.e. up-scaling) implies errors and/or uncertainties. In this work, we rehearse a non-

invasive technique, based on micro-topography surveying by laser scanning techniques (Buckley et al., 

2008), scantly used in soil erosion quantification. Precisely, different types of Terrestrial Laser Scanners 

(TLS) and different software have been tested for their suitability in the volumetric quantification of soil 

material (e.g. regolith or rock) exported by water erosion.  
 

Materials and Methods 
The following TLS types (and makers between brackets) have been used: ScanStation 2 (by Leica), Ilris-3D 

(by Optech), and LS-800 (by Faro). The datasets captured by these devices were analysed by 5 distinct 

software-types: Polyworks, I-Site Studio, Cyclone, Faro-Scene and JRC-3D- Reconstructor. The Faro TLS 

device uses the Phase-based measurement principle, which is a priori more precise but with less range than 

the other devices that use time-of-flight technology. All the experimental work was performed in the same 

selected sector of a hillslope in the Tabernas Desert badlands (figure 1). It was a bare marly area with some 

lichens (Canton et al., 2004) about 30 m x 30 m, with  20º slope.  

 

Experimental procedures  

Once the experimental site was georeferenced by specific fixed targets, a first scanning was performed  with 

an horizontal resolution (x,y) of 5 mm (grid spacing), in order to obtain the point cloud used in the 
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generation of the first Digital Surface Model (DSM). This relief surface forms the base surface level and was 

named the “a” surface. Later on, all DSMs are filtered in order to generate the Digital Terrain models 

(DTMs) used to construct the terrain surface using the Triangulated Irregular Networks (TINs). It is 

important to underline that all scanning processes were carried out from the same reference point, prepared 

initially in order to minimize the differences between devices due to local factors, e.g. slope, distance, 

divergence of the laser spot, etc.; that is, equal conditions for all TLS. Next, an artificial (i.e. manual) erosion 

process was done in five plots using chisel, hammer and shovel, extracting every time between 1 and 2 L of 

soil or regolith material. The location of plots was chosen to represent variable conditions of the topographic 

relief (steepness, roughness of surface cover, soil humidity) (Figure 1). The manually-exported materials 

were stored in bags for further weighting at the laboratory. The extracted volumes were defined in relation to 

the variable bulk density (BD) of the site, which varies between 1.2 to 1.4 kg/L (measured with both the 

excavation and the cylinder methods). Consequently field measurements had an error of ± 0.12 kg/L. A 

second scanning was performed at the same resolution and, once processed it generated the second surface 

“b”. Therefore, the difference between the two surfaces (“a” and “b”) was assumed to provide a good 

estimation of the extracted volumes (i.e. eroded plots). This experimental protocol was repeated with every 

TLS instrument. The generated surfaces (i.e. TINs) by different software-types have provided different 

values for each plot based on the algorithm used to generate the TIN surfaces and the total number of points 

in the dataset (i.e. point cloud). 

 

 

Figure 1.  Map of the study area,about 30 m x 30 m, compiled by a TLS cloud of points. Manually-eroded plots 

are marked in green. 

 

Results and discussion 
The TLS measurements generate four types of major error: i) errors of the TLS itself, which is related to the 

TLS maker; ii) errors related to the horizontal resolution of the scanning process; iii) errors related to the 

treatment and filtering process; and iv) errors related to the algorithm used by each software in the TINs 

generation. In general, measurement errors produced by different scans of the same instrument (hardware) on 

the same area and under the same conditions of processing and treatment are minimal, and could be 

neglected. However, the different algorithms used by distinct software to generate the surface TINs from the 

same point cloud could lead to significant variations that should be evaluated.  

Results revealed that both hardware (TLS) and software types are of paramount importance: results from 

each instrument vary in relation to the software used, and vice versa. Figure 2 shows the results of the eroded 

volumes measured and calculated from two devices, ScanStation 2 and Ilris-3D, and 4 types of softwares 

(Cyclone, Polyworks, Reconstructor, and I-Site). These results reveal a significant variation between real 

measured volumes (weighted in laboratory) and calculated ones (i.e. defined TINs). In figure 2, the green 

line of each curve, which represents the calculated values (TINs differences), highlights the clear variations 

for each instrument and software-type. Theoretically, the best approximation for TLS calculated volumes are 

achieved when all the points in the green line are located  between minimum and maximum laboratory-

measured values; this best fit was not achieved in any of the plots. However, the combination ScanStation 2 - 

Cyclone (figure 2 a) has three points between minimum and maximum values, indicating a good 

approximation to the laboratory-measured volumes. On the other hand, the same point cloud generated by 
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the same LS device but processed by another software produced moderately different results (Figures 2 c, d, 

e and f). It is worthy to underline that all the devices and software-types are quite close to real eroded data, 

indicating the high capacity and strong potential of this new technology.  

 

 
Figure 2.  Volumes measured and calculated by different TLS and software-types (green dots linked by 

discontinuous lines). Blue and red lines dots and lines represent maximum and minimum laboratory-values. 

 

Conclusions 
Laser scanners offer a highly effective method for collecting massive volumes of precise, high-resolution 3D 

information for microtopographic detection, and hence surface variations. Monitoring processes of soil 

erosion using TLS techniques in specific parts of the landscape susceptible to erosion processes is faster and 

more precise than other topographic methods. Without any specific pre-evaluation of appropriateness or 

suitability of the different tested devices, it is possible to emphasize that all TLS achieve a sufficiently dense 

point cloud to generate a TIN that fit well (with a good precision and accuracy) to minimum landform 

surface details. However, some combinations of hardware and software achieve better results (better fit to 

real data) than others. Results revealed that datasets obtained from the same device (LS) but modelled by 

different software-types are slightly variable, which highlights the importance of the algorithm used in the 

surface construction process (i.e. triangulation process), a crucial step in the volumetric calculation of the 

eroded surfaces. When coupling TLS microtopographic data with detailed soil surface mapping in terms of 

soil type, cover type, etc. the TLS could be an indispensable tool for studying detailed mechanisms of soil 

surface erosion. Finally, due to its measuring accuracy, its high point density, and its measurement speed, 

TLS increasingly represents an alternative to and/or an additional option for traditional methods for data 

capturing and soil erosion detection.  
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